Initializer lists (1)

Container initializer list is defined as follows:
initializer list<type of elements> list name = { sequence of values };

Methods implemented in 1nitializer list are size, begin and end.
Examples:
#include <initializer list>
// see https://en.cppreference.com/w/cpp/utility/initializer list.html

using namespace std;
initializer list<int>11={1,2,3,4,5 };
for (initializer list<int>::iterator it = il.begin(); it != il.end(); ++it)

cout << *t<<"M;
initializer list<Date> christmas = { Date(24, 12, 2019), Date(25, 12, 2019),

Date(26, 12, 2019) };

for (auto 1t = christmas.begin(); it != christmas.end(); 1t++)

cout << it->ToString() << endl;

The values specified in initializer list are constants:
for (auto 1t = christmas.begin(); it != christmas.end(); 1t++)
cout << it->SetYear(2020) << endl; // error

https://en.cppreference.com/w/cpp/utility/initializer_list.html
https://en.cppreference.com/w/cpp/utility/initializer_list.html

Initializer lists (2)

The 1nitializer list is very efficient for writing functions with variable number of arguments.
Example:
void print(initializer list<int>);

void print(initializer list<int> 1l)

d
for (auto 1t = 1l.begin(); 1t != 1l.end(); ++it)
d
cout << *t<<" M
)
cout << endl;
)
Usage:
int main()
d
print({ 1, 2,3,4,5,6 });
return 0;

b

String as container

Generally, string in C++ 1s also a container but as 1t has a lot of specific methods for operating
with characters, we may do not turn attention to this fact. The string has the same iterators as
vector: begin, end, cbegin, cend, rbegin, rend, crbegin, crend. There 1s a constructor that uses
iterators to another string as parameters. Example:
string s = "We have 125 euros"; // extract the number
inti=0,j=0;
for (auto 1t = s.begin(); 1t != s.end(); it++, 1++) {
if (isdigit(*it))
break;
b
for (auto 1t = s.begin() + 1; it !=s.end(); 1it++, j++) {
if (lisdigit(*1t))
break;
b
string our money(s.begin() + 1, s.begin() + 1+ J); // constructor with iterators
cout << our money << endl; // prints 125

String iterators may be used for inserting, erasing and replacing. Example:
string no = "no";

s.replace(s.begin() + 1, s.begin() + 1 + j, no.begin(), no.end());

cout << s << endl; // prints "We have no euros"

See more on https://en.cppreference.com/w/cpp/string/basic_string.html

http://www.cplusplus.com/reference/string/string/
http://www.cplusplus.com/reference/string/string/

Multimaps (1)

Multimap 1s very similar to map. The difference 1s that the multimap may contain several
clements with the same key.
Example:
#include <map> // See https://en.cppreference.com/w/cpp/container/multimap.html
using namespace std;
multimap<string, Date> deadlines = {

{ "Mathematics", Date(5, 1, 2019) },

{ "Mathematics ", Date(10, 1, 2019) },

{ "Mathematics ", Date(15, 1, 2019) }

g

The multimap cannot support operator/] and at methods. As the inserting never fails,
auto return_value name = multimap name.insert({ key, value });

and

auto return value name = multimap name.insert(make pair(key, value));

return always the iterator to the inserted element.

To get the number of elements with the same key use method count:
int number of elements = multimap name.count(key);

Example:

cout << deadlines.count("Mathematics") << endl; // prints 3

https://en.cppreference.com/w/cpp/container/multimap.html
https://en.cppreference.com/w/cpp/container/multimap.html

Multimaps (2)

To get the range of elements with the same key use methods lower bound and upper bound:
multimap<string, int> students = { { "John", 5 }, { "Mary", 4 }, { "Mary", 2 },

{ "Elizabeth", 5 }, { "James", 1 }, { "Mary", 6 }, { "Walter", 2 }, { "Samuel", 5} };
auto itl = students.lower bound(string("Mary"));
cout << (itl->first).c str() <<''<<itl->second << endl; // prints Mary 4
auto 1t2 = students.upper bound(string("Mary"));
cout << (it2->first).c_str() <<'' << it2->second << endl;
// prints Samuel 5 (the first that 1s not Mary)
// the order inside map 1s Elizabeth, James, John, Mary, Mary, Mary, Samuel, Walter

If no one element was found, the return values of lower bound and upper bound are identical:
auto 1t3 = students.lower bound(string("Timothy"));

cout << (1t3->first).c str() << endl; // prints Walter

auto 1t4 = students.upper bound(string("Timothy"));

cout << (1t4->first).c str() << endl; // prints Walter

A bit more convenient method to get a range 1s to apply method equal range:

auto range = multimap name.equal range(key);

Here range 1s a pair in which member first 1s the iterator pointing to the lower bound and
member second 1s the iterator pointing to the upper bound. Example:

auto range = students.equal range(string("Mary"));

cout << (range.first)->first.c_str() <<'' << (range.first)->second << endl; // prints Mary 4

cout << (range.second)->first.c_str() <<'' << (range.second)->second << endl; //prints Samuel 5

Sets (1)

Set 1s also very similar to map. The difference is that the elements are not key / value pairs but
the element itself 1s a unique key. In memory the sets are implemented as balanced binary trees.
A set 1s defined as follows:
set<type of elements> set name = { sequence of initial values };
or
set<type of element> *pointer name = new set<type of elements>
{ sequence of initial values };
The 1nitial values are optional. If they are not present, empty set is created.
Example:
#include <set> // See https://en.cppreference.com/w/cpp/container/set.html
using namespace std;
set<string> subjects = { "Mathematics", "Physics", "Chemistry", "Programming in C++",
"Programming in Java" };

The set cannot support operator/] and at methods. As in maps

auto return value name = set name.insert(new element);

the return value 1s a pair in which member first is an iterator referring to the new element or, if
the inserting failed, to already existing element having the same key. Member second is of type
bool. If 1t is false, the operation failed. Example:

auto ret = subjects.insert("Software security");

cout << boolalpha << ret.second << endl; // prints true

cout << ret.first->c str() << endl; // prints "Software security"

https://en.cppreference.com/w/cpp/container/set.html
https://en.cppreference.com/w/cpp/container/set.html

Sets (2)

Traveling through the set using iterators 1s as with the other containers:
for (auto it = subjects.begin(); it != subjects.end(); ++it)
cout << *1t << endl;
or
for (auto& x : subjects)
cout << x.c_str() << endl;
The results are printed in sorted order.

The elements of a set are constants:
for (auto 1t = subjects.begin(); 1t != subjects.end(); ++1it)
{
if (*1t == "Programming in Java")
*1t = string("Programming in C#"); // error, cannot change the set elements

b

for (auto& x : subjects)

d
if (x == "Programming in Java")
x = "Programming in C#"; // error, cannot change the set elements

b

Methods like find, erase, lower bound, upper bound, etc. are as in maps except that instead of
key we have to use the element itself.

Multisets

The difference between set and multiset is that a value in multiset may occur several times.

Example:

#include <set> // See https://en.cppreference.com/w/cpp/container/multiset.html

using namespace std;

multiset<Date> deadlines = { Date(5, 1, 2019), Date(10, 1, 2019) }, Date(15, 1, 2019),
Date(5, 1, 2019), Date(5, 1, 2019), Date(15, 1, 2019) };

As the inserting never fails,

auto return_value name = multiset name.insert(new_element);

returns only the iterator to the inserted element.

As multimap, multiset also supports method count. To get the range of elements with the same
key use methods lower bound and upper bound.

https://en.cppreference.com/w/cpp/container/multiset.html
https://en.cppreference.com/w/cpp/container/multiset.html

Hashing

Let us have an empty array (hash table) with length m and a function 4(k) (hash function) so
that:

* the arguments of /(k) are the keys of our objects

 the value calculated by (k) 1s an integer of range 0...m-1

If the keys are integers, the simplest hash function is:
int hash(int k, int m)
d

return k % m; // remainder of division operation

b

The return value of hash function gives us the index of our object in hash table. If we need to
insert an object, we put it into the calculated location. If we need to find an object, we calculate
its location and check, is it there or not. Of course, the objects in table are unordered (not
sorted).

The drawback of hashing is that the index calculated with hash function may be not unique, i.e.
the location to which we want to store our object may be already occupied by another object.
For example, if m = 100 then objects with keys 200, 300, .. claim position with index 0. This
situation is called as collision.

There are many approaches to select a proper hash function and the length of table and to
handle collisions.

Unordered maps (1)

An unordered map stores key-value pairs in a hash table. Insertion, removing and access are
based on keys. The keys must be unique.

An unordered map is defined as follows:

unordered map<type of key, type of value>unordered map name = { pairs of initial values };
or

unordered map<type of key, type of value> *pointer name =new unordered map<type of key,
type of value> { pairs of initial values }

The initial values are optional. If they are not present, empty map is created.

Examples:
#include <unordered map> // See https://en.cppreference.com/w/cpp/container/unordered map.html
using namespace std;
unordered map<string, Date> deadlines = {
{ "Mathematics", Date(5, 1, 2019) },
{ "Chemistry", Date(10, 1, 2019) },
{ "Physics", Date(15, 1, 2019) }

I
unordered map<string, Date> *pDeadlines = new unordered map<string, Date>;
delete pDeadlines;

https://en.cppreference.com/w/cpp/container/unordered_map.html
https://en.cppreference.com/w/cpp/container/unordered_map.html

Unordered maps (2)

Default hash function is provided for keys of C++ standard types like integers and strings. If
the key 1s an user-defined object, the unordered map is defined as:

unordered map<type of key, type of value, hash function class>
unordered map name = { pairs of 1nitial values };

Hash function class must contain constant method operator(). The argument must be a constant
reference to key object and return value must be of type size ¢.
Example:
class DateHash
d
public:

size t operator() (const Date &d) const {

return (d.GetDay() + d.GetMonth() + d.GetYear()) % 101;

h
I
unordered map<Date, string, DateHash> deadlines = {
{ Date(5, 1, 2019), "Mathematics" },
{ Date(10, 1, 2019), "Physics" },
{ Date(15, 1, 2019), "Chemistry" }

Unordered maps (3)

Most of methods of unordered map are similar to the corresponding methods of map.
Examples:

auto ret = deadlines.insert(make pair(Date(18, 1, 2019), "Programming in Java"));

Remember that the return value is a pair in which member first 1s a map iterator referring to the
new element or, if the element with the specified key was present and therefore the inserting
failed, to already existing element having the same key. Member second 1s of type bool. If it 1s
false, the operation has failed. The map iterator in return value itself has members first
presenting the key and second presenting the value.

if (ret.second)

cout << (ret.first->first). ToString() <<'' << (ret.first->second).c_str() << endl;
for (auto 1t = deadlines.begin(); 1t != deadlines.end(); ++it)

cout << (1t->first). ToString() <<'' << (it->second).c_str() << endl;
deadlines[Date(12, 1, 2019)] = "Programming in C++";
for (auto& x : deadlines)

cout << x.first. ToString() <<'' << x.second.c str() << endl;
auto 1t = deadlines.find(Date(5, 1, 2019));
cout << (1t->first). ToString() <<'' << (it->second).c_str() << endl;
deadlines.erase(Date(15, 1, 2019));

unordered map does not support 1iterating backwards (rbegin, rend, crbegin, crend) and
methods lower bound and upper bound.

Unordered maps (4)

unordered _map has several methods for analyzing the situation in built-in hash table. The

table elements are called buckets. Normally a bucket contains one object, but due to collisions

there may be several.

1. 1int bucket number = bucket count(); returns the number of buckets in hash table.

2. void rehash(number of buckets); sets the new number of buckets accompanied with the
reorganization of table. Ignored if the argument is less than the current number of buckets.

3. int max possible bucket number = max bucket count(); returns the number of buckets
that the hash table is possible to contain.

4. 1nt bucket index = bucket(key); returns the index of bucket containing object with the
specified key.

5. mtnumber of elements in bucket = bucket size(bucket index); returns the number of
objects in the specified bucket (mostly 1).

6. float load factor =load factor(); the load factor is the ratio between the number of
objects in the container and the number of buckets. If the load factor i1s 1, there are no
empty buckets and the collisions are inevitable.

7. void max load factor(max value); sets the upper limit for load factor. After each
inserting the load factor is automatically recalculated and compared with the upper limit.
If the limit 1s exceeded, the number of buckets is automatically increased and the table
reorganized.

Unordered multimaps

unordered multimap 1s very similar to unordered map and multimap It may contain several
clements with the same key.
Example:
#include <map> // See https://en.cppreference.com/w/cpp/container/unordered multimap.html
using namespace std;
unordered multimap<string, Date> deadlines = {

{ "Mathematics", Date(5, 1, 2019) },

{ "Mathematics ", Date(10, 1, 2019) },

{ "Mathematics ", Date(15, 1, 2019) }

https://en.cppreference.com/w/cpp/container/unordered_multimap.html
https://en.cppreference.com/w/cpp/container/unordered_multimap.html
https://en.cppreference.com/w/cpp/container/unordered_multimap.html

Unordered sets

unordered set 1s very similar to unordered map and set. The element itself 1s a unique key.

Example:
#include <set> // See https://en.cppreference.com/w/cpp/container/unordered set.html

using namespace std;
unordered set<string> subjects = { "Mathematics", "Physics", "Chemistry", "Programming in

C++", "Programming in Java" };

https://en.cppreference.com/w/cpp/container/unordered_set.html
https://en.cppreference.com/w/cpp/container/unordered_set.html

Unordered multisets

unordered multiset 1s very similar to unordered set. A value in unordered multiset may occur
several times.

Example:

#include <set>// See https://en.cppreference.com/w/cpp/container/unordered multiset.html
using namespace std;

unordered multiset<Date, DateHash> deadlines = { Date(5, 1, 2019), Date(10, 1, 2019) },
Date(15, 1, 2019), Date(5, 1, 2019), Date(5, 1, 2019), Date(15, 1, 2019) };

https://en.cppreference.com/w/cpp/container/unordered_multiset.html
https://en.cppreference.com/w/cpp/container/unordered_multiset.html

Allocators

The template presenting vectors is not template<typename 1> class vector {....}; The correct
expression 1s:

template<typename T, typename Allocator = allocator<T> > class vector { ¥

Templates for lists, maps, etc. are similar. Allocator class is responsible for memory
management. The default allocator (STL standard) is presented by template:

template<typename T> class allocator { }s

Typically, the default allocator that uses new and delete operators is good enough and as it 1s
the default value of template second parameter, we may simply not think about allocators.
Sometimes, however, due to the problems with performance (games, for example) and / or
fragmentation or when we want to use the specific capabilities of operating system, we may
have to develop our own custom allocator.

Bitsets(1)

In C, we have bitwise operations AND &, OR |, exclusive OR *, negation ~, shifting left <<
and shifting right >>. We may also handle separate bits using bit fields.

Bitset in C++ 1s a container storing a fixed number of bits:

std::bitset<dimension> bitset name("initial values");

for example:

#include <bitset> // see more in https://en.cppreference.com/w/cpp/utility/bitset.html
bitset<5> bits1("10101");

To see the values use cout:

cout << bits] << endl; // prints 10101

Initial values 1n definition are optional. If they are not present, all the bits are set to zero:
bitset<5> bits2;
cout << bits2 << endl; // prints 00000

The 1nitial value may be presented also by a 32-bit unsigned integer:

bitset<®> bits3(0xF1);

cout << bits3 << endl; // prints 11110001

A bitset may be converted into string, unsigned long or usigned long long. Examples:
string s = bits1.to_string();

unsigned long lu = bits1.to ulong();

unsigned long long 1lu = bits1.to ullong();

cout << "Ox" << hex << llu <<'' << dec << llu << endl; // prints 0x15 21

https://en.cppreference.com/w/cpp/utility/bitset.html
https://en.cppreference.com/w/cpp/utility/bitset.html

Bitsets (2)

To access a bit from set you may use unsecure operator//. Examples:

bitset<5> bits1("10101");

bits1[1] = 1;

cout << bits] << endl; // Order positions are counted from the rightmost bit, which is order
// position 0, the result is 10111 and not 11101

cout << boolalpha << bits1[1] << endl; // prints true

bits1[10] = I; // wrong index, the program crashes

Secure access methods are fest (returns the value of specified bit), set (sets new value for the
specified bit) and flip (converts the specified bit from 1 to 0 or vice versa):
try {

cout << boolalpha << bits1.test(1) << endl; // prints true

bits1.set(3, 1);

bits1.set(4, 0);

bits1.flip(0);

cout << bits] << endl; // prints 01110

cout << boolalpha << bits|.test(10) << endl; // throws exception
b
catch (out of range &e) {

cout << e.what() << endl; // prints "invalid bitset position"

b

Bitsets (3)

Method set() without arguments sets all ther bits to 1 and reset() all the bits to zero. Method
flip() without arguments converts all the bits in set:

bitset<6> bits4("101010");

bits4.flip();

cout << bits4 << endl; // prints 010101

bits4.set();

cout << bits4 << endl; // prints 111111

bits4.reset();

cout << bits4 << endl; // prints 000000

Assignment, comparing (only == and /=) and bitwise operations between bitsets are
supported but only if the dimensions match. Examples:
bitset<6> bits5("101010"), bits6("010101");

bitset<6> bits7 = bits5 & bitso6;

cout << bits7 << endl; // prints 000000

bitset<6> bits8 = bits5 | bits6;

cout << bits& << endl; // prints 111111

bitset<6> bits9 = bits5 " bits6;

cout << bits8 << endl; // prints 111111

bitset<6> bits10 = bits5 << 2;

bitset<6> bits11 = bits6 >> 2;

cout << bits10 <<'' << bitsl1 << endl; // prints 101000 000101

Bitsets (4)

Method all() returns true if all the bits in set are 1. Method none() returns true if all the bits
are zero. Method any() returns true if there 1s at least one bit with value 1. Examples:
bitset<6> bits12("111111"), bits13("000000"), bits14("001000");
cout << boolalpha << bits12.all() <<''<<bitsl3.none() <<''<<bitsl4.any() << endl;

// prints true true true
cout << boolalpha << bits14.all() << ''<< bits14.none() << endl; // prints false false
Method size() returns the dimension of bitset. Method count() returns the number of bits with
value 1:
cout << bits14.s1ze() <<'' << bits14.count() << endl; // returns 6 1

	Slide 1: Initializer lists (1)
	Slide 2: Initializer lists (2)
	Slide 3: String as container
	Slide 4: Multimaps (1)
	Slide 5: Multimaps (2)
	Slide 6: Sets (1)
	Slide 7: Sets (2)
	Slide 8: Multisets
	Slide 9: Hashing
	Slide 10: Unordered maps (1)
	Slide 11: Unordered maps (2)
	Slide 12: Unordered maps (3)
	Slide 13: Unordered maps (4)
	Slide 14: Unordered multimaps
	Slide 15: Unordered sets
	Slide 16: Unordered multisets
	Slide 17: Allocators
	Slide 18: Bitsets(1)
	Slide 19: Bitsets (2)
	Slide 20: Bitsets (3)
	Slide 21: Bitsets (4)

